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OutlineOutline

Polymer TFTs on glass and flex
– Materials
– TFTs and backplanes 
– Plastic substrates and mechanical 

stress
TFT mobility
– Physical structure of films 
– Interfaces
– Electronic structure
– Transport models

Transistor Lifetime
– Bias stress effects
– Chemical effects and encapsulation

SAM (~ 20 Å thick)

-VD

VG

~100 nm

+ + + + + + + + 

Typical TFT structure
Bottom gate
Coplanar source/drain
Polymer deposited on SAM



MotivationMotivation

How many more generations before the 
cost outweighs the benefits?

Alternative technology
Lower cost equipment → printing
Less material use → additive processes
R2R processing → flexible substrates
New functionality → conformable, 
rollable, lightweight…..

→ Jet-printing
→ Printable materials
→ Flexible substrates
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Soluble polymer semiconductorsSoluble polymer semiconductors

Conjugated
– Mostly p-type conduction, 1.5-2 eV

band gap 
Alkyl side groups added for solubility
– Regioregular
– Polythiophene, PQT-12 

Structural order required for high 
mobility
– π stacked lamella structure
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PolythiophenePolythiophene TFTsTFTs PQT
Mobility 0.03-0.15 cm2/Vs

– Best on thermal oxide
– Lower on large area dielectric
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TFT BackplanesTFT Backplanes

Capacitative displays; LCD, reflective
Current drive; OLED

t

Feedthru
voltage VFT

Leakage IL

Gate 
pulse

V

Pixel 
voltage

VFT = VG Cparasit/Cpix

t = RTFT . Cpixel

dV/dt = IL/Cpixel

Printing → large Cparasit → Large Cpixel → high mobility



AA--Si arrays on flexSi arrays on flex

Printed polymer array on flex

300 µm

512x512 a-Si array on PEN

100 µm

Upper right cornerUpper left corner



Plastic substrates: Control of runPlastic substrates: Control of run--outout
Dimensional stability of plastics is much 

poorer than glass or steel
Run-out is induced by 
– mechanical stress in deposited film

» Thin film deposition
» Thermal expansion mismatch 

– Moisture uptake

Elastic modulus Y;
Glass ~100 GPa
Steel ~200 GPa
Plastic ~1-5 GPa
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TFT mobilityTFT mobility

Physical structure of films 
– Dielectric interfaces

Electronic structure
– Density of states

Transport models



High mobility polymer semiconductorsHigh mobility polymer semiconductors

π stacked lamella structure
Highly oriented crystalline film
– 10-100 nm ordered regions
– Separated by amorphous material

Transport in ~1 molecular layer
– 2-d density of states

X-ray measurement of 
ordered structure

0.00001

0.0001

0.001

0.01

0.1

0.2 0.4 0.6 0.8 1 1.2 1.4

q (1/Ang)

In
te

ns
ity

 (A
rb

)

AFM image of PQT

π stacking

Dielectric interface

Hole transport

S
S

S
S

C12H25

H25C12

n

X-ray diffraction;
as-deposited
annealed



XX--ray diffraction dataray diffraction data

Lamellar ordering and (hopefully) 
crystal structure
– Highly ordered material is best (?)

PQT out of plane x-ray has similar 
scattering for OTS and bare Si, but 
mobility is 1000x different
– What happens at the interface?
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Studying interfaces by Studying interfaces by delaminationdelamination
Polymer layer can be transferred from 
one surface to another
Transfer from SAM-coated surface to 
TFT structure
– comparable TFT performance as 

spin-coated films
Test role of surface to determine 
structure
– Transfer then anneal

polymer film

PDMS stamp

coplanar TFT structure

SAM-coated silicon wafer
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Transferred Transferred TFTsTFTs
Transfer to bare oxide/nitride

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

-30 -20 -10 0 10 20
Gate Voltage (V)

Sq
rt[

D
ra

in
 C

ur
re

nt
 (A

)]

0.0E+00

2.0E-04

4.0E-04

6.0E-04

8.0E-04

1.0E-03

1.2E-03

1.4E-03

1.6E-03

-30 -20 -10 0 10 20

Gate Voltage (V)

Sq
rt[

D
ra

in
 C

ur
re

nt
 (A

)]

Transfer to OTS8-oxide/nitride

VSD = -40 V

VSD = -40 V

Transfer to bare oxide dielectric
– Starting mobility ~0.015-0.03 cm2/Vs
– mobility decreases on annealing

Transfer to oxide + OTS
– mobility increases on annealing

The polymer surface structure is 
~stable at room temperature 
– 120C anneal allows structural 

change
Structure controlled by energetics, 
not kinetics
– The equilibrium structure depends on 

the surface hydrophobicity

anneal at 120C

anneal at 120C



Electronic structure calculationsElectronic structure calculations

LDA calculations of crystalline structure
– no electron-phonon interaction
π-π interaction widens bands
Valence band shifts w.r.t. amorphous 
material by ~0.3 eV
2-dimensional DOS
– 2x1014 cm-2 eV-1

Estimate of RT mobility
– Acoustic phonon  scattering
– µ0 ~ 10 cm2/Vs in π direction

Change of band edges with chain 
spacing
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DOS for mixed phase materialDOS for mixed phase material
L

d

Amorphous fraction = 2d/L
– At least 10-20%

Shift of band edge 
– ~0.3 eV
– barrier to the amorphous region

substrate

Mobile states Mobile states

Lamella

Disordered 
intergranular material

Lamella

energy

ordered

amorphous

shifted 
ordered

DOS

E



Transport processesTransport processes

Localized 
states

Hopping transport in 
localized states

DOS

EnergyAmorphous polymers
– Hopping in broad band of localized 

states
– Low mobility

Single crystal organics
– Band transport

Polycrystalline polymers
– Mixture of amorphous and crystalline
– What role does each have in the  

transport?
– How do you know?

Band states

Localized 
states

DOS

Energy

Transport in 
band states



Transport in PQTTransport in PQT

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

0 0.002 0.004 0.006 0.008 0.01

Temperature 1/T (K)

m
ob

ili
ty

 (c
m

2 /V
se

c)

PQT on OTS

PQT on 
bare SiO2

Thermally activated transport
High mobility material has much 
higher prefactor (~ 500 cm2/Vs) 

µ =µPRE exp[ET/kT].
– Implies high band mobility and 

high DOS
Low mobility material has low 
prefactor
– Implies a different transport 

process

( )k
n

kTN
T

T

V
PRE /exp0 γµµ −=

Statistical shift



Transport model calculationsTransport model calculations

Model can fit the mobility 
and T-dependence
– reasonable value of prefactor

Change of slope explained 
by transport in amorphous 
regions
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LifetimeLifetime

Bias stress
Chemical 



BiasBias--stress effectsstress effects

Threshold voltage shift; no 
change in mobility
– Slow charge trapping

Effect in the polymer, rather than 
the SAM or the dielectric
– Depends on the polymer 
– Independent of dielectric 0.01
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Bias stress in polymer Bias stress in polymer TFTsTFTs

Fast and slow stress effects in PQT
– Threshold voltage shift

Fast process;
– Stress occurs in a few seconds
– Reverses equally quickly
– Not important for TFT arrays

Slow process
– Dominates after 100s-1000s 

sec
– Reverses slowly
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BiasBias--stress effectsstress effects
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Slow bias stress in PQTSlow bias stress in PQT

At low duty cycle
– Slow process only
– VT shift increases as 

power law tα, α =0.3-0.5
– VT shift saturates due to 

slow recovery
Recovery time constant 
~100 hours at 300K
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Environmental StabilityEnvironmental Stability

VSD

VG

O2

HH
O

O3

VOCs

N2

CO2
NOx

Photo-induced effects
– photocurrent under operation
– photooxidation from  1O2

light shielding solves most problems

Impurities
– contamination during fabrication
– adsorption from the environment

difficult to control; 
unknown effects for long-term stability



M. Heeney, et. al. J. Am. Chem. Soc.; 2005

Merck - ambient XRCC – ambient

B.S. Ong, et. al. J. Am. Chem. Soc.; 2004

Philips – “dry air”

E. Meijer, et. al. J. Appl. Phys. 2003

Doping in the AmbientDoping in the Ambient
“well-known that P3HT is doped by oxygen exposure”
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TFT operation in clean dry airTFT operation in clean dry air
“purified dry air”

Oxygen is evidently not a strong 
dopant for polythiophenes
Air effect must be impurities
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TFT operation in the water vaporTFT operation in the water vapor
Mobility is relatively unaffected
Bias stress effect is enhanced
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Some questionsSome questions

What is the structure at different length scales?
Why does a SAM improve the a TFT?
What is the role of surface roughness?
Can we model the transport accurately
How would you design a polymer to have a higher mobility?
What is the mechanism of bias-stress; does it depend on film 
contamination?
What ambient impurities are affecting the TFT and how can they 
be prevented?
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